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A Novel Analytic Method for the Broadband

Determination of Electromagnetic Impedances

and Material Parameters
Rolf Pelster

Abstract—A simple analytic technique is described that al-
lows the determination of complex impedances from quasistatic

frequencies (some Hz) up to 2 GHz with one setup and a
single sweep. Samples are placed in a shielded capacitor-like
measurement cell that is inserted into a transmission line. The

transmission coefficient of the setup is measured for one signal
direction, i.e., only two receiver channels are needed. A complete

calibration is achieved with only two standards. Dielectric and,

with restrictions in the frequency range, magnetic material pa-
rameters can be determined via these impedance measurements.
Temperature-dependent calibration and measurement are possi-

ble and even low losses down to tan 6 = 5 ~ 10–4 and small
impedances Z > 0.05 Q can be determined. The applicability of

the method is experimentally verified over a frequency range of
nearly nine decades from 5 Hz to 2 GHz.

I. INTRODUCTION

I N order to measure the impedance of an electronic com-

ponent or the complex permittivity & = Cl – ie2 and

permeability ~ = ~1 – i~a of a material, precise broad-

band techniques are needed that should also allow to vary the

temperature. Besides the low frequencies, the range between

1 MHz and 1 GHz is of special interest. Since the clock rates

of PC’s already lie above 10 MHz and are still increasing, the

dielectric material of computer boards should be characterized

up to 1 GHz. Absorber materials for anechoic chambers have

to be tested above 10 MHz.

Until now, there has been no precise technique for the

determination of complex impedances Z = ZI + iZ2 that

works in the low frequency range from O–1 MHz as well as

in the microwave region of a few GHz. Therefore, one has

to use different techniques for a broadband characterization,

requiring a lot of time and equipment.

Low-frequency techniques (e.g., balancing a bridge [1]

or four-wire measurements) do not take into account phase

variations and multiple reflections, and therefore precise mea-

surements can be carried out only up to about 1 MHz.

Time-domain methods do not allow complete error correction

(calibration) and exhibit a lower accuracy and resolution at

high frequencies.

Above 1 MHz, combined reflection and transmission mea-

surements can be used requiring a more sophisticated setup
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(network analyzers). In general, a matched measurement cell

with the unknown impedance is inserted into a transmission

line. The influence of cables and instruments is taken into

account using a three-step procedure, the calibration (for an

overview see [2]), in which the measurement cell is replaced

by three different standards. The reflection and transmission

coefficients of each standard are measured for either possible

signal directions, i.e., four complex values per measurement

frequency and calibration standard. In addition to the time and

equipment needed (bridges to split off reflected signals, rever-

sal of signal direction) there are two principal disadvantages

of these techniques that limit their application and accuracy.

The used standards, e.g., a matched 50-fl termination, change

their properties as a function of temperature in an unknown

way, so that high-precision measurements are possible only

near room temperature. The same holds for pure reflection

measurements, e.g., with a sample used as a termination of

a coaxial line [3]. These techniques are not applicable below

1 MHz and they do not allow to measure highly conductive

samples or to resolve loss tangents E2 /el with values smaller

than 10-1, in an ideal case smaller than 10-2 (see e.g., [4]).

A review about techniques for the determination of material

parameters is given in [5] where also monochromatic methods

(resonators) are discussed.

In this work a novel broadband transmission method for

the determination of complex electromagnetic impedances is

presented combining the simplicity of handling known from

low-frequency techniques with the requirements at higher

frequencies [6], [7]. It allows to determine complex electro-

magnetic impedances, e.g., passive electronic components (ca-

pacitors, inductances or resistors), from quasistatic frequencies

up to 2 GHz using a single experimental setup. The complex

permittivity and, with restrictions in the frequency range, the

magnetic permeability of materials can be determined via

these impedance measurements. Complete analytic calibration

is achieved by measuring two simple known impedances. Be-

cause of the simplicity of the standards, temperature-dependent

calibrations and measurements are possible.

II. CALIBRATION AND IMPEDANCE MEASUREMENT

Consider a measurement cell that is inserted into a trans-

mission line [see Fig. l(a)], i.e., it is connected to a signal

source and the detector of a network analyzer or of a vector-

voltmeter that automatically measures amplitude and phase of

the transmission coefficient f$~leas (P). Between the electrodes
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Fig. 1. Schematic view of the measurement system: (a) Capacitor inserted
into a transmission line. G power source, PS: power splitter, DT: detectors

of reference and measurement path, P: condensor plates, ~: sample of an

unknown material, SC: shleldlng cover. (b) Equivalent circuit.

P (circular capacitor plates of radius r.) there is a sample

of a material Al or an electronic component (radius TI S TC,

length d). As will be pointed out, the specific form of the

measurement cell and of the electrodes is not critical for

the impedance measurement. However, a shielded parallel-

plate capacitors advantageous for the determination of the

permittivity of a material. Since the transmission coefficients

of the measurement and reference path are given by the

complex voltage ratios of output and input, Um/Uin and

Uref/Uin, the measured transmission coefficient Sr =

Um/U,ef represents just a normalization. Thus it is sufficient

to consider only the generalized equivalent circuit of the

measurement path [see Fig. l(b)]. The complex cascading (or

transmission) matrices A and II describe the transmission

line up to the surfaces of the electrodes, which are located

in the reference planes El and E2, respectively. They relate

the incoming (a, ) and outgoing (bi ) signals of both sides

of the corresponding two ports [8]: (bl, al ) = A . (az, h).

The unknown impedance of the capacitor, Z, is given by the

impedance of the sample and potential parallel capacitances

and inductances (if the sample cross-section is smaller than

the plates; see Section IV). LI and L2 are self-inductances of

the arrangement in the region between EI and E2; Cl and

Cz are capacitances between the cylindrical shielding cover

of the measurement cell (SC) and the sample or the edges

of the electrode surfaces. They depend on the geometry of

the measurement cell and the plate distance d and determine

the phase length of, the transmission line between El and

Ez: r) = –w~(L1 + Lz)(C1 + C’z) (with w = 2 w). For

our geometry and for a metallic sample (Z = O) of length d

this is just the phase length of a coaxial airline @ = w . d/c

(c: speed of light). In the frequency range in question # can

be assumed to be independent of the value of Z, i.e., of the

actual sample radius r S rc (if smaller samples are measured)

and the material properties provided the plate distance d is

small compared to the distance between plates and shielding

cover, r,h – ‘rC (we have chosen ~,h = 15 mm and ‘rC = 6.5

mm whereas in general d < 1 mm holds): The capacitances

between the edges of the plates and the shielding cover (air gap

measurement) roughly equal that of an coaxial airline [9], [10].

As long as w IACI .2.20 <<1 holds (Zo: termination impedance

of the measurement path) the small changes of L, and C; for

different samples will not influence the transmission coefficient

(the same holds for the inductance as long as wAL/(2ZO)ll

1). Thus, the phase length @is just given by the plate distance

d and is independent of the value of Z.

Now the cascading matrices A and 13 may be extended to

give a new simplified equivalent circuit. The impedance Z is

connected in series between the two error two-ports described

by the cascading matrices C and D. The cascading matrix

of the whole system is obtained by multiplying those of the

two-ports

T= C. XP. D. (1)

XP being the cascading matrix of the two-port containing

only the unknown impedance Z. Its corresponding reflection-

(S,,) and tr~nsmission-coefficients (Sij) are Sfl = Sj’2, =

S$l . 2/(22.) and S~l = S~2 = (1 + 2/(22.))’1 where

20 is the terminating impedance of the measurement branch.

Therefore, XP is given by

Xf’l = –s11s.22/s21 + S12 = 1 – z/2zrJ

X;2 = sll/s21 = 2/220

X;l = –s22/s21 = –2/220

X;2 = 1/s21 = 1 + 2/220

From (1) the measured transmission coefficient SW = 1/T22

of the whole system is calculated yielding

Sy= N
KZ+l

(2)

with

N=
1

C21D12 + CZZDZ.Z

K= & . (–C21D12 + C22D22 + C21D22 - c22D12)

N and K are functions of frequency, temperature (induced

by thermal expansions of feeding lines and measurement cell)

and of the plate distance d. They have to be determined by

two additional transmission measurements, S& and S~l–--the

so-called calibration. For this purpose Z is replaced by known

impedances 2. and 26, respectively.

In practice, different samples are investigated the lengths

of which do not equal those of the used standards, d. and

db. Therefore, the resulting phase shift A@ has to be taken
into account. Equation (2) will be valid for Z. and .Zb, if the

respective transmission coefficient is replaced by

t. =S;lexp(i ~ (da -d))

‘b=s;lexP(i; (d~-d ))”
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Fig. 2. Experimental setup for temperature controlled transmission measure-
ments from 5 Hz to 2 GHz using two network-analyzers (see text). The HP

3235 SwitchiTest Unit is used forthe remote control of the relay connection
and for the temperature control.

Of course, the construction of the measurement cell has to

ensure that a variation of the plate distance only changes the

length of the transmission line between the reference planes

,?31and E2. From (2) (for Z, Z. and Z~) the equation for the

determination of Z is obtained

z = Zata(tb – s~as) + Zbtb(sw – t.)

Sr(tb – t.)
(3)

The measurement cell remains unchanged in the transmission

path, only the impedances Z, 2. and Z~ are exchanged. Thus,

the reference planes of the calibration are the surfaces of the

capacitor plates.

If the unknown impedance is connected parallel to 2.,

i e., if it is connected between the inner conductor of the

transmission path and ground, a similar calculation shows that

the impedances in (3) have to be replaced by the respective

admittances.

The maximum measurement frequency is determined by the

geometry of the measurement cell. A first estimate can be

made by considering capacitor plates, sample and cylindrical

shielding cover as a part of a coaxial airline. For wavelengths

~ < 7r(TC + r.h) higher modes, i.e., altered electromagnetic

field distributions, become relevant in the region of the sample

[9], [1 1]. These higher modes do not allow an unambiguous

determination of the impedance and thus

(4)

should hold. For rC = 6.5 mm and ~,h = 15 mm, v~aX <

4.4 GHz. As we will show below, the experiments yield

umax E 2 GHz for this geometry.

The experimental setup is shown in Fig. 2. In order to

cover the whole frequency range of the method two network-

analyzers have been used for the measurement of the trans-

mission coefficients (HP 3577B: 5 Hz-200 MHz/ HP 8510B:

200 MHz–2 GHz). They are connected to the measurement

cell via two highly reproducible relay connections allowing

computer-controlled measurements. Of course, the use of two

analvzers is not a inherent feature of the method. Also. a simzle.

network-analyzer or a vector-voltmeter with an appropriate

frequency range may be used. For temperature-dependent

measurements from 100450 K a hollow metallic cylinder

surrounds the outer shielding cover of the measurement cell,

which is cooled by liquid nitrogen and heated by a thermo-

coaxial cable.

III. CHOICE OF CALIBRATION STANDARDS

The impedances Z. and Zb may be any known electronic

components or materials between the electrodes. It is advan-

tageous to choose a short Z. = O, i.e., a metallic ring with

the outer diameter of the plates and a lossless, possibly un-

kuown capacitance C6 = 1/(iti,Z~) (air-gap or lossless spacer

between the condenser-plates) as standards. With this choice

(3) for the unknown inpedance Z = ZI + ZZ2 simplifies to

Z=taisys-l 1.— –. (5)
ta/tb – ~ i(i)cb

.,

The value of cb is real and independent of frequency, provided

wrc /c < 0.3 holds; this inequality corresponds to a maximum

deviation of about 1% at the highest frequency [see [3], (1 l)],

i.e., for a plate radius of rC = 6.5 mm up to about 2 GHz. Since

cb is a real number, the loss tangent tan 6 = E2/E1 c? 21/22

[see (1 1)] is independent of its value and is exactly determined

even if C6 is unknown. This is one reason for the high

resolution of the method (see below).

The value of cb may be determined directly from the

measurements of S;l and S~l, if the measurements of the

transmission coefficients are carried out over a larger fre-

quency range containing also frequencies below 1 MHz. Below

1 MHz multiple reflections in the feeding lines are hardly

noticeable [C21 D12 s’ C21DZZ = C22D12 z O and thus

K = 1/(22.); see (2)]. Thus a simple normalizing procedure

can be applied: tb = ta /( l/(2,zokdcb ) + 1). In general 6’6

is calculated in the frequency range near 500 kHz where the

measured amplitude of tb is sufficiently large, yielding a high

measurement accuracy. A temperature dependent calibration

is possible, because of the simplicity of the impedances (if

the plate distance during the air gap measurement should

depend on the temperature, C6 has to be calculated for each

temperature point).

Equations (3) and (5) are independent of both the transmis-

sion line impedance Z~ and of the termination impedance 2.,

which may be unknown. Of course, at high frequencies above

500 kHz Z~ = 20 (in general 50 Q) should hold to avoid

unnecessary reflections caused by an impedance mismatch.

The measured amplitudes of the transmission coefficients will

be sufficiently large for both air gap and short. However, at

low frequencies (~ <500 kHz) ltb/t. I & 2ZOwC6 << 1 [see

(2)] holds and (5) becomes

z ~ tb/s~as – tbfta
for ltb/tal <1. (6)

iwck

Therefore, the optimal calibration procedure should depend on

121 (ZdC can be determined using a simple ohmmeter):

If IZ I is small (in practice IZ I <20 kfl) residual nonlineari-

ties of the detectors will become important because lt~ I << Ita I

and Itb I << ISw I holds. Therefore, it is better to calculate Z
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only from SW and t. below 500 kHz using a normalizing

procedure, i.e., Z = 2 ZO(ta/SY – 1).

For large 121 we have ISr I << [t. I and (6) further

simplifies tCSZ ? tb/Sr . l/(iwC~). Thus the amplitude

differences compared to t. are not important. A normalizing

procedure, however, would show the effects of nonlinearity

and yield a lower resolution. Therefore, calibration with the

second standard is necessary and (5) has to be used for

all frequencies. In order to enhance the amplitude of the

transmission coefficients and thus the measurement accuracy,

a large termination impedance, e.g., 20 = 1 Mfl (the exact

value may be unknown), can be used below 500 kHz, while

the termination impedance of the reference path remains

unchanged (in general 50 Q). This procedure is possible, for

example, using modem network analyzers with programmable

input impedances (see Fig. 2).

IV. CALCULATION OF THE IMPEDANCE OF THE SAMPLE

If the sample cross-section is smaller than the capacitor-

plates an additional inductance and capacitance will contribute

to the measured impedance Z. For example, liquid samples or

powders may be filled in a cylindrical container with metallic

front faces, which act as electrodes. Consider a cylindrically

shaped sample of length d and radius r ~ I-C surrounded by

a material (a container of inner diameter r, outer diameter

r., permittivity ESur, and permeability LLSUr)or by air (Esur =

#’sur = 1). From a calculation of the field distribution the

impedance of the sample is obtained (see Appendix A)

2P =
Z – iwL

1 – iw(c~ + cf,)z
(7)

with

L = l-t’or%ur
— . d ~In(rC/r)

2T
(8)

CL= Coe,ur: ~(r-: - r’). (9)

(Co, PO: permittivity and permeability of vacuum). Cf, is the

fringing capacitance between the edges of the two condensor

plates. Since r s rc its value is independent of the material

between the plates. The inductance L takes into account the

phase shift due to the smaller sample radius r ~ r.. At low

frequencies 1> LJIL/Zl (7) becomes 1/2 = l/ZP + iu(C~ +

Cf,), i.e., a simple parallel circuit of sample and surrounding

medium.

Since a capacitance C6 has been measured as a second

calibration standard, the difference between its experimentally

determined value (see Section III) and its theoretical value

(neglecting the fringing fields) equals the fringing capacitance

Cf,(db) = Cb – 61)
A. + (&b – l)Ab

db

(A,: area of the capacitor plates; Ab: area of a possible spacer

of permittivity &b and thickness db). A direct theoretical calcu-

lation is difficult because of the influence of the surrounding

shielding cover [9], [10]. In the case of different electrode

distances, the fringing capacity for the measurement of a

sample (thickness d # db) has to be corrected. In general this
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Fig. 3. Complex permittivity of an nnsintered ceramic at room temperature

versns freqnency on a log.-log. plot. Solid line: method of thk paper (5 lHz–3

GHz), dotted line: HP dielectric probe, an open coaxial reflection method
(100 MHz-10 GHz).

correction is much smaller than the capacitance of the samlple.

An approximative formula is given in Appendix B

C fr(d) E C fr(db) + 2 “ EoT. . h(db/d).

Of course, the highest accuracy is achieved for db H d.

V. DETERMINATION OF MATEAL PARAMETERS

The impedance of a cylindrically shaped sample is

(10)

where E(r) and H(r) are the axial electric and circumferential

magnetic fields (see Appendix A)

E(r) = Eo.lo(h) exp(–iwt)

(& = EI – i&z: complex permittivity of the material; p = ~~1–

i~z: complex permeability of the material; dp = d – dm length

of the sample without thickness, dm, of possible metallic

contacts; k = ~ @i: complex wave vector; JO, JI: complex

Bessel function of Oth and 1st order). Skin effects are taken

into account via Jo and J1. Thus the complex permittivity is

calculated from the capacitance Cp = 1/(iwZP ) by solving

the equation

CP= CO-E
2J1(kr)

krJo(lcr)
(11)

(see also [3]), for example by a numerical search for zeros

(CO = &@’rr2/dp). At low frequencies (Ikrl < 1), (11)

becomes CP = COE. (1 + (kr)2/8 +. o.) ~d thus & = CP/Co,

which is the well-known low-frequency formula for plate

capacitors. Then also samples with noncircular cross-sections
may be investigated.

In Fig. 3 the result of a measurement on a unsintered

ceramic is shown. In order to compare with a commercial

reflection method (material as termination of an open coaxial

cable, v = 100 MHz–10 GHz) the front faces of the sample

have not been metallized. The curve consist of about 1000
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Fig. 4. Permittivity of PETG, an amorphous polymer, versus frequency at

temperatures between 44° C and –1710 C (from 44° C to – 156° C in steps

of 20° C) on a serm-log.plot. The imperfect sample geometry determines the
upper frequency limit.

frequency points and no averaging or numerical smoothing

has been applied. The extremely broad frequency range and

the high resolution of the method can easily be observed while

losses below S2/cl = 5. 10-2 can hardly be resolved by the

open coaxial reflection method (see Fig. 3). In [12] results

are compared to waveguide measurements in the range of

10 GHz. Of course, conductive samples can also be studied.

An example showing the large measurement range is given in

[13], where insulating and conductive polymer blends (over

14 orders of magnitude, from o = eo~zw = 10–12 to 102

Q–lm–l) have been investigated. Also temperature dependent

calibration and measurement are possible (see Fig. 4).

At higher frequencies a considerable circumferential mag-
netic field exists between the plates and thus magnetic materi-

als (~ = pl – 2~2 # 1) may also be investigated. For Ikr I Jl

1 two samples of different radii can be used to determine the

independent quantities ~ and ~. This yields two equations of

the same form as (11), but for different radii r-. Fig. 5 displays

the permeability (above 10 MHz) of a magnetic material (TDK

IB-01 1). Further results will be published later.

Equation (11) is derived under the assumption that the elec-

tric field between the capacitor plates is purely perpendicular

to the plates, i.e., IkdP I < 1 has to hold. In general it can

be seen from the frequency dependence of the perrnittivity

whether this limit has been exceeded. In order to rule out any

. 3

2.
.

0

0D2
o

1

0

6 7 8 9 10

loglo(~ [Hz])

Fig. 5. Magnetic permeability p = PI – Z#2 versus frequency of a magnetic
material (TDK IB-O 11) at room temperature on a log. -log. plot.

influence of a disturbed field distribution Ikdp I < 0.2 is used.

Thus the upper frequency limit for an accurate evaluation of

the material parameters is v ~ 0.2. c/(2~dP m), i.e.,

v~aX[GHz] <
/iQi[mml

or in the case of conductive samples [al /(ZoU) = e2 >> Cl]

Using thinner samples will therefore increase the maximum

measurement frequency, which indicates the limit for the

determination of ~. On the other hand very small electrode

distances will result in large capacitances or small impedances.

Thus at high frequencies the transmission coefficient may

not sufficiently differ from that of a metallic short [see (2)]

resulting in a smaller accuracy of the measurement (see

below).

VI. RESOLUTION AND ACCURACY

In this section we shall focus on the theoretical accuracy

limits which are given by the uncertainty of the phase (p) and

amplitude (A) measurement. With modern network analyzers

an accuracy up to AA/A = Ap[rad] = 2.5 . 10–4 can be

achieved after calibration, i.e., a reproducibility of 0.002 dB

and 0.014°. Of course, an additional phase error Ap =

w/c . Ad (c: speed of light in vacuum) will occur at high

frequencies, if the thickness of the sample and of its metallic
contacts are not exactly known or if the corresponding front

faces of the samples are not parallel! In order to avoid air

gaps or contact resistances the front faces of samples should

be metallized (air gaps caused by non-parallel front faces

or by surface roughness would yield a too small measured

permittivity; see [3]). In practice the relative error of the

sample geometry A rel (T2 /dP ) has to be added to the error

of A rellcl = Al&l/le[ (in general A re1(r2/dP) is in the
range of 1%). The loss tangent, however, is nearly geometry

independent for r Y rC.

Neglecting geometry deficiencies, A rel 12PI m A rel Isl

and A rel (-Z1/Za) N A rel (E2/&l) hold. In Appendix C the
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relative accuracy of measurement of a nonmagnetic sample

with radius r = r. is shown to be [(15) and (16)]

&IIEl s 5. 10-4.(1+ a . IEI)

with Q = 2 ZotiCO [CO = SOTr~ /dp]. This accuracy corre-

sponds to the reproducibility of measurements using the same

sample. The range where the loss tangent tan 6 = ez /s1 can

be resolved is given by A,el (~) = 1 and thus

5.10-4. (l+alEl)<:s
2.103

1 + (l\&l “

For a . [e I <0.1 the accuracy is independent of frequency

and the geometric error A rel (T2 /dP ) will dete~ine the

accuracy of A rel Ie1. Fig 6 shows the permittivity of a

conductive TiC/polymer composite. Below 100 Hz 52/s1 >

103 holds and the real part of c cannot be resolved. In Fig. 7

the permittivity of a polyethylene sample is displayed. At 10
kHz a loss tangent of about 2 . 10-4 is measured. At low

frequencies the measurement amplitudes are small and thus the

accuracy is decreased, as can be seen from the noise in sz. The

same effect is observed near 500 kHz where the terrninaton

impedance of the network analyzer is switched from 20 = 1

MQ to 50 Q In the case of large Iel or small sample thickness,

the accuracy is decreased at high frequencies (a [c I > 1).

Since f21El & 2Zo/jZpl the

can be measured (Ar.llel = A

220 .5.10-4 = 0.050

1499

smallest impedance wlhich

rellz~l = 1, is [Zplmin =

VII. CONCLUSION

A novel broad-band calibration and measurement method

for the investigation of materials (solids, compressed powders

or liquids) and for passive electronic components has been

presented and experimentally verified over a frequency range

of nearly 9 decades from 5 Hz–2 GHz. A further miniaturiza-

tion of the measurement cell would raise the upper frequency

limit. The method exhibits several advantages:

1)

2)

3)

4)

5)

Only transmission measurements in one signal direc-

tion are needed, i.e., detectors and bridges or direc-

tional couplers for the measurement of reflected signals

are not necessary and two detectors are sufficient.

The influence of the transmission path and of the

measurement cell are taken into account analytically

by only two calibration measurements, i.e., there me no

systematic errors in the determination of the impedance

due to mathematical approximations.

Temperature-dependent calibration and measurements

are possible because of the simplicity of the calibration

standards.

The measurement cell that contains the unknown

impedance does not have to match the line impedance.

Therefore, a lot of different measurement cells may

be used. By choosing an appropriate geometry of

measurement cell and electrodes the effort for the

preparation of suitable samples can be kept to a

minimum. Also, other types of measurement cells with

two electrodes can be used. For example, it would

be possible to determine the complex inductance of

a material-filled coil (calibration with a short and the

unloaded coil).

The measurement range is very large, and the accuracy

of the method is very high. Even very small impeda-

nces down to 12P\ = 0.05 0 and impedances having

a small loss tangent (21/22 = ez/sl m 5. 10–4) can

be determined.

APPENDIX A

FIELD DISTRIBUTION AND IMPEDANCE OF THE SAMPLE

In order to determine the impedance of a cylindrically

shaped sample (radius r < TC, thickness d, complex pemnit-

tivity E and complex permeability ~) between two circular

capacitor-plates of radius r. the field calculation of Kolodziej

and Sobczyk [14] (coaxial sample holder for reflection mea-

surements) is followed. However, the calculation differs at the
transition from electric and magnetic field to the integrated

values of voltage and current. Dissipation in the material is

a priori taken into account, i.e., the restrictions given in [141

are not valid. In addition, the sample may be surrounded by a

known material (a container of inner diameter r, outer diame-

ter rC, complex permittivity ~ sur and complex permeability
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p surj for details see [6]). The solution of the wave equation

yields an axial electric and a circumferential magnetic field

E = E. = EOJO(kla)e-’Wt O~a~r

H = IId = i . EO/Zl . Jl(kla)e-’tit

E = E, = plJO(kza) + pziVO(kza) r<a<rc

H = II+ = i ~[plJl(k2a) + p2Nl(k2a)]/Z2 “

(Jo, J1: complex Bessel-function of Oth and 1st order; IVO,

IVl: complex Neumann function of Oth and 1st order, PI, ,02:

complex constants; kl = w/c , ~, kv = w/c . ~w:

wave vectors of the sample and of the surrounding medium

with corresponding wave impedances ZI = ~- and

zz=~ ~Lofl,u,/(so&,ur).

In this calculation disturbed fields at the edges of the plates

are neglected and the electrical field is assumed to be purely

perpendicular to the plates and constant in the z-direction

(i3E/ilz m O). The latter relation corresponds to Ikldl < 1

and Ikz dl < 1. The continuity of the tangential fields at a = r

yields the complex constants

E(T) – fz?lvo(q)
pl =

Jo(xl)

with xl = k2r and X2 = k2rC. Thus the fields at a = rc are

E(rC) = flE(r) + aiZ2H(r)

H(rc) = & . E(r)6 – ~H(r)

with

a = [Volvo – No(xl)Jo(xz)]/lVE

P = [J1(x1)~o(z2) - IV1(Z1)Jo(Z2)]/NE

-y = [JoN – IVO(Z1)J1(x2)]/NE .

6 = [JINx – lVl(Xl)Jl(Z2)]/NE

NE= JUNO – J~(x~)~~(z~)

In order to calculate the impedance of the capacitor the

integrated fields have to be considered. The voltage U =

f; E(rC) dZ between the surfaces of the capacitor plates is

U = E(rC)d = flE(r)d + cviZ2+H(r)27rr

= @7p+ CYiZ2&Ip. (12)

up = j: E(r) dz and Ip = $ H(r)dl are the voltage across
the sample and the current through the sample.

current 1 = $ H(rC) dl is

27rrc
I = H(rc)27rrc = –~27rrH(r) . ~ + i8—

Z2d
27rrc

= –~Ip. ~+i6— -Up.
Z2d

The total

E(r)d

(13)

Equations (12) and (13) yield the impedance of the sample

2P = Up/Ip as a function of the total measured impedance Z

Z – iwL
2P =

~ – iwCLz
(14)

where ‘q, the inductance L and the capacitance CL are defined

as follows:

Substituting the Taylor series expansions of the Bessel- and

Neumann-functions in a, ~, ~ and 6 and neglecting terms of

order X2 yields (8) and (9) (see Section IV) and q = 1. For

r .=6.5 mm, r=5mm, esu, = psu, =1, andv=2

GHz the error due to this approximation is smaller than 1%.

In order to take into account the fringing fields between the

capacitor plates, CL is replaced by CL + Cf. and thus (7) is

obtained.

APPENDIX B

CORRECTION OF THE FRINGING CAPACITANCE

In Section IV it has been pointed out how to determine the

fringing capacitance Cf,(db) between the two capacitor plates

by experiment. Since the plate distance of calibration db and

sample measurement d may differ, Cf, (d) has to be calculated

for an accurate evaluation of the permittivity. Consider first

Kirchhoffs formula [15]

[(Cf, (d) = eorC in
16mc(d + w)

d2
)

‘:”1++”-11
for a capacitor without shielding cover (w: thickness of the

plates) yielding for ACf, = Cf.(d) – Cf,(db)

ACf, = &orC[2 . ln(db/d) + (1 + w/d) . ln(l + d/w)

- (1+ w/db) ~ln(l + db/w)] “

If electrodes and sample are considered as a part of a coaxial

airline, w >> d, w >> db should hold rather independently of
the actual thickness of the capacitor plates. A Taylor series

expansion yields

AC fr = ~orC[2 . h(db/d) – 1/2. (db – d)/w + . . .]

and thus (10) of Section IV. This relation has been verified by

experiment and is a good approximation even if the thickness

of the sample exceeds that of the plates. Of course, the

surrounding shielding cover will influence the field distribution

and thus the absolute value of the fringing capacitance, but this

effect is taken into account by the experimental determination

of Cf, (db ). In a good approximation, changes depend only on

the perimeter of the plates and the plate distances and are thus

rather independent of the geometric form of the measurement

cell.
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APPENDfK C

CALCULATION OF THE MEASUREMENT ACCURACY

According to (5) we have Z = ZI + iZ2 = (t./S’ ‘eas –

1)/~ with K = ‘iWCb(t./tb– 1). Since the accuracy of

K roughly equals that of the numerator and K N 1/220

(no multiple reflections, see Section III), we will use Z N

(ta/S ‘eas - 1)/(22.) and multiply the relative error by 2. A

calculation [6] according to the error propagation law yields

the accuracy as a function of measured amplitude A and phase

p [ta/s mess = A . ~–@ 1
Are,lZl

‘%’k+2)2”(+72+(a2”@’)2
and

()A,el ~

‘%((%)2+(++&)2(A9””
Since the calibration has been taken into account, the absolute

accuracy of amplitude and phase measurement is not critical

as long as detectors with a good linearity are used. Thus

A mess = AW R AA/A denotes the reproducibility of the

phase and amplitude measurement.

For a sample radius of T = r. holds Z m 2P, Z R

l/(iA’Oe), and 22/21 = el/e2. Thus also A,,ll&l = A.,l[ZI

and A.e1(s2/sl ) = A,e1(Z2/Zl ) are determined. With a =

2ZOWC’0 the above equations become

A,ellsl = 2. Amea, ~ (Cm’ + 1)’+ (a&,)’

<2. Ames, . (1+ CY~[El) (15)

and

()

Isl’
A,.l ~ = 2. Am.., . — . (a&,)z + (CSE’ + 1)2

El &l&’

<2. Ames, .
()

:+: .(1 + alel). (16)

With modem network analyzers a reproducibility of up to

A mess = 2.5 .10-4 can be achieved, i.e., a reproducibility

of 0.002 dB and 0.014°.
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